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Abstract

For the deterministic decomposition and prediction of nonlinear short-crested irreg-
ular ocean waves, a Directional Hybrid Wave Model (DHWM), accurate up to second-
order in wave steepness, has been developed. The Extended Maximum Likelihood
Method is employed to determine the directional spreading of wave energy, and the ini-
tial phases of directional free-wave components are calculated using a least-square fitting
scheme. The effects of nonlinear wave-wave interactions among the free-wave compo-
nents are computed using a hybrid second-order wave-wave interaction model which is
a combination of conventional and phase modulation approaches. The free-wave com-
ponents are obtained by decoupling the nonlinear effects from the measurements. The
wave decomposition is carried out through an iterative process of computing the free-
wave components and their nonlinear interactions. Given an ocean wave field defined
by multiple fixed-point measurements, the DHWM is capable of decomposing the wave
field into a set of directional free-wave components. Based on the derived free-wave
components, the wave characteristics of the wave field can be predicted deterministi-
cally and accurately by the DHWM in the vicinity of the measurements. The present
method has been verified numerically and applied to both laboratory and field measure-
ments in various scenarios. Satisfactory agreement between the predictions based on the
decomposed free-wave components and the corresponding measurements indicates that
the proposed method is reliable, flexible and robust. It is expected that the DHWM will

have a variety of applications to ocean science and engineering.
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Deterministic Decomposition and Prediction of Deep Water Waves 1
1 Introduction

A deterministic description of multi-directional waves can provide the prediction of wave
characteristics in the time domain based on related measurements. This capability is
lack in existing studies, and yet is desirable to many ocean and coastal science and
engineering applications. For example, in order to determine the statistics of typical
wave characteristics of rough seas, such as wave groupness, the maximum wave height
or crest height and related wave period, measured surface elevations are needed. While
surface elevations can be readily measured in the laboratory, surface elevations in the
ocean are often indirectly measured using pressure transducers, velocity meters or other
instruments. Thus it requires the above mentioned capability to deduce the surface
elevation based on indirect measurements. This study aims at the development of a
nonlinear directional wave model and related numerical scheme which can make the
deterministic predictions of general wave characteristics of short-crested seas based on
the measurements of a variety of commonly deployed instruments.

Ocean waves can be intuitively viewed as the constitution of many wave compo-
nents of different frequencies, amplitudes and advancing in different directions. The
basic wave components, known as free-wave (or linear) components, obey the dispersion
relation. Due to the nonlinear nature of surface waves, the interactions among these
free-wave components result in bound-wave components which in general do not obey
the dispersion relation. When linear wave theory is employed, bound-wave components
are either ignored or treated as free-wave components of the same frequency. The pro-
cedure of predicting waves characteristics is first to decompose & measured wave field
into free-wave components and then to superpose the corresponding wave characteris-
tics of the free-wave components and their interactions (bound-wave components). In
the case of unidirectional irregular waves, linear wave theory with the help of the Fast
Fourier Transform (FFT) can deterministically determine wave characteristics based on

the measurement at a fixed point. Because ocean wave are often directional or shori-
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crested, the assumption of unidirectional waves is sometimes unrealistic. In the case
of directional seas, the number of simultaneous wave records of a wave field is ofien
limited to as few as three to five due to the cost. The use of two-dimensional FET to
decompose a wave field is prohibited. Alternatively, linear wave theory together with
cross-spectrum analyses are used fo derive a directional frequency-amplitude or energy
spectrum, which is no longer a deterministic decomposition of a measured wave field. As
a result, the information of the initial phases of wave components is lost. Hence, quite
different from a unidirectional wave field, wave characteristics of short-crested ocean
waves in general can not be deterministically predicted based on the measurements even
under the assumption of linear wave theory. Wave characteristics is simulated based
on the‘assumption of random phases of wave components. However, it is well known
that quite different wave processes may have the same or similar spectrum if the relative
phases of wave components are not specified (Funke & Mansard 1981).

In the cases of steep ocean waves, the contributions of bound-wave components
may become dominant or important with respect to the free-wave components of the
same frequency in the frequency bands either lower or higher than the spectral peak
frequency (Zhang et al. 1996a). Because the relationship between the elevation and
potential of free-wave components are different from those of bound-wave components,
predicted wave properties using linear wave theory, for example wave kinematics based
on measured wave elevation or wave elevation based on measured dynamic pressure,
were found to be quite inaccurate for steep waves (Torum & Gudmestad 1989; Spell et
al. 1996; Zhang et al. 1996b). For accurate prediction, nonlinear wave effects have to be
considered in the decomposition and superposition of a wave field. That is, the bound-
wave components are decoupled from the measured wave characteristics before a wave
field is decomposed into its free-wave components. Based on the free-wave components,
the bound-wave components can be computed and the resultant wave characteristics
nearby the measurements can be obtained as the superposition of free-wave and bound-

wave components. In the case of unidirectional irregnlar waves, it has been shown that
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the hybrid nonlinear wave model (HWM) can provide more accurate predictions than
using linear wave theory (Spell et ol. 1996). Encouraged by the success in unidirectional
irregular waves, this study is envisioned.

Previous studies on the measurements of short-crested waves have been dominated
by statistical approaches. The statistical approaches based on linear wave theory were
well documented. For reference, readers are referred to Borgman (1990). Using weakly
nonlinear wave theory, attempts were made to decouple the energy of bound-wave com-
ponents from the measured energy spectrum (Tick 1959; Weber & Barrick 1977; Komen
1980). Assuming a directional wave-energy spreading function, Masuda ef al. (1979)
and Mitsayasu et al. (1979) showed the contribution from second order bound-wave
components is significant at the frequencies about twice of the spectral peak frequency
in wind waves generated in a flume. Using poly-spectra analyses, Herbers & Guza (1991
& 1992) showed that the nonlinear contributions from the sum- and difference-frequency
interactions could be significant in measured short-crested wave pressure and particle
velocities. In spite of many differences, a common assumption made in these nonlinear
statistical studies is that the initial phases of free-wave components are independent
and randomly distributed between 0 to x. Contrary to the abundance of studies based
on statistical approaches, the corresponding studies based on deterministic approaches
were very rare. Our literature survey only found an early attempt by Sand (1979) and
recent one by Schaffer & Hyllested (1994), and both of them were based on linear wave
theory. Besides, their methods were limited to the measurements of one surface elevation
and two horizontal velocity components and sometimes there could be significant energy
losses during the wave decomposition.

The study presented in this report is deterministic and considers both wave direc-
tionality and nonlinearity. In several respects, this study is innovative and unique.
First, based on as few as three independent measurements recorded at fixed-points, the
DHWM is able to decompose a directional irregular wave field into free-wave components .

without the assumptions of random initial phases of free-wave components and & prior
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directional spreading function. Secondly, the nonlinear effects are decoupled from the
measured wave characteristics by using two different perturbation approaches: a con-
ventional and a phase modulation methods. It was found that truncated solutions for
bound-wave components given by a conventional perturbation method may not converge
if the wavelengths of two interacting wave components are quite different while the con-
vergent solutions can be derived using the phase modulation method (Zhang et al. 1993).
For a wave field of energy distributed in a relatively broad frequency band, the use of
both conventional and phase modulation methods to describe the wave-wave interaction
can provide convergent solutions for unidirectional irregular waves (Zhang et al. 1996a),
which is also numerically demonstrated for multi-directional waves in §4.1. In our earlier
study, only conventional method was used for the solution of bound-wave components,
which limits the application to a wave field of a relatively narrow-band spectrum (Prislin
et al. 1997). Thirdly, this study renders deterministic predictions of wave characteristics
of a measured directional field. It is demonstrated that a variety of wave measurements
(pressure transducers, surface pericing wave gauges and velocimetry) can be used as
input for the wave decomposition. Since all wave characteristics can be computed based
on the potential of free-wave components, our method can be straightforwardly extended
to allow for other measurements, such as wave slopes and accelerations as well. Finally,
because of above capabilities, extensive and rigorous examinations about the validity
and accuracy of this model and numerical scheme can be made through the comparisons
in the time-domain between the predicted wave characteristics and the corresponding
laboratory and field measurements,

In addition to the neglect of viscous and wind effects, and wave breaking due to the
use of potential theory, the proposed directional hybrid wave model (DHWM) developed
in this study is truncated at second order in wave steepness. The ‘weak’ or resonant
wave interactions in deep or intermediate-depth water are of third order and hence are
not considered. The weak wave interactions can become substantial after hundreds of

dominant wave periods (Su & Green 1981; Phillips 1979). Hence, for accurate prediction,
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the computation of wave characteristics based on this study should be limited within
a short distance from the measurements (typically a few wavelengths of the dominant
wave components) and the proposed model is not valid for the study of long-term or
long-distance wave evolution, such as wave energy transfer among wave components with
different frequencies (Hasselmann 1962).

The report is organized in the following manner. In § 2 the mathematical formulations
of the DHWM are described. To materialize the DHWM, numerical procedures for the
decomposition of a directional wave field are detailed in § 3. Numerical verifications of
the present theory and methods are elaborated in §4. The predictions based on the
present method are compared with both laboratory and field measurements in various
scenarios, and the accuracy and usefulness of the DHWM are examined in § 5. Finally,

the conclusions and further work are presented in §6.
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2 Mathematical Formulations

2.1 The Hybrid Wave Model

For an incompressible and irrotational flow with a free surface, the governing equation

and boundary conditions can be written as

Vi =0, —h <z <, (2.1)
% 1 2. s B
O Aver e =Co  ata=g, (22)
o omec seac_oe
ot + 8z Oz + dy By~ Oz at 2=, (2:3)
8%
5= 0 at z = ~h, (2.4)

where & is the velocity potential, { the surface elevation, ¢ time, g the gravitational
acceleration and h the water depth which is assumed to be uniform in this study. The
z-axis is set at the calm water level, the y-axis is orthogonal to z-axis in the horizontal
plane, and the z-axis is pointing upwards. C} is the Bernoulli constant which will be
chosen to ensure z = 0 located at the calm water level.

The conventional perturbation method (Longuet-Higgins 1962) may render the trun-
cated solutions for the wave-wave interaction problem in the order of wave steepness,
defined as the product of the wave number and amplitude. When the ratio of the short-
wavelength to that of the long wave, ¢, is of O(1), the conventional perturbation solution
converges very quickly. However, when ¢ is small and approaches the long-wave steep-
ness £1, the truncated solution converges slowly and eventually diverges (Zhang et al,
1993).

The phase modulation method proposed by Zhang et al. (1993) is an complementary
solution to the conventional perturbation method. It considers the consequence of wave

interactions as the modulation on the short wave by the long wave and describes it
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directly in the solution of the short-wave component. For unidirectional waves the
phase modulation solution has been proved to be identical up to third-order in wave
steepness with the conventional perturbation solution when £, < & < 0.5. However, as
€1 becomes larger and greater than ¢;, the conventional perturbation solution diverges,
while the phase modulation solution is convergent. But, when ¢ > 0.5, the phase
modulation method can not accurately predict the slowly varying interaction between
the two wave components at third-order in wave steepness (Zhang et al. 1993; Chen &

Zhang 1997). The work conducted in this section is to extend the previous results to

directional waves.

2.1.1 The Conventional Perturbation Solution

The conventional solution for the potential of the interaction between two directional
wave components in an intermediate-depth water was given by Longuet-Higgins (1962)

and Hsu et al. (1979),

aig coshlki(z + A)] . ﬁafoq— cosh{2k;(z + R)] . ‘
o cosh(kih) sinf; + 8 sinh*(k;hk) sin(26;)

0= 3]

=]

cosh{[ky — ka|(z + h)]

a1 &atry ‘
2 A cosh(|k; — kalh) sin(fy - 6)
dyay0, coshf|k; + kol(z + R)] |
T A T sy 4 Ryhy SO+ 6), (2:5)
where
kg{ZA(l T )\)(chiaz + 1) =+ AS(CX? e }.) + Ctz - 1]
Ay = z 2.6
) + kg(}” e A)z e ag;k; I k2§ tanh(!kl - kg[k) ’ ( a)
51
A el .
o {2.6b}
oy =coth(f&h), i=1,2, (2.6¢)
' =cos(f3; — fa), (2.6d)
gg =k m ;tiyy — il -+ 5{5 ¢ o 1,2, {2.66)
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in which a;, f;, k;, 07 and §; represent the wave amplitude, directional angle with respect
to the z-axis, wave number vector, frequency and initial phase of the ith wave component,
k; is the modulus of the wave number vector, k; = [ky|, ki, and k:, represents the z-
and y-components of ky, respectively. By default, a smaller subscript indicates a lower
frequency for the wave component, i.e. oy < o3. The subscripts of sign (+) and sign
(=) indicate the sum and difference type interactions, respectively. The conventional

solution for the surface elevation is in the form of

2 alo? 3 cosh(2k;h) 1
§ = Z{a;cosf?,—{— 1 [2 nb (k) b (h) cos 26;

F3
k
+ TR (1= XA + My cos(6y — 6)

2&2
k
“+ alc: 2 [(1 + A)A(_;_) -+ M(+)] 005(91 + 92), (2.7&)
2
where
M(¢3 = ./\2 + 1 - A(chiag + 1). (2.7h)

The Bernoulli constant is found to be

2. alk; 1
Co=2_ 2 sinh 2kA°

=1

(2.8)

The dynamic pressure, velocity and acceleration components of the conventional
perturbation solution can be readily derived from the velocity potential, accurate up to

second order, and the related formulations are presented in Appendix A.

2.1.2 The Phase Modulation Solution

Zhang et al. (1993 & 1996a) found that the truncated solution by the conventional per-
turbation method for the interaction between an unidirectional short wave and a unidi-
rectional Jong-wave components may not converge, if the two wavelengths are quite dif-

ferent. This convergence difficulty can be overcome using the phase modulation method
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{(Zhang et al. 1993). The phase modulation method was extended to allow for directional
waves in deep water by Hong (1993). His results revealed the structure of the solutions
for the modulated short-wave phase, amplitude and velocity potential of a short wave
modulated by a long wave advancing in a different direction. However, Hong’s derivation
is mathematically lengthy and complicated with the conformal mapping of different so-
lution domains. To simplify the derivation, developed in this study is a new modulation
perturbation analysis with which the solution for the modulated directional short-wave
component is obtained directly in the Cartesian coordinates. Furthermore, the present
solution is extended to allow for an intermediate-water depth with respect to the long-
wave component.

In contrast to the conventional approach, which describes the effects of wave-wave
interactions in terms of high order solutions and interprets them as bound waves or forced
waves, the phase modulation approach considers the consequence of wave interactions
as the modulation on the short-wave component and thus describes it directly in the
solution of the short-wave component. For a directional deep-water short-wave com-
ponent modulated by an intermediate water-depth long-wave component, we explicitly
formulate the modulation in the solutions for the short-wave potential and elevation
according to the features discovered by Hong (1993) and then determine the solutions
by using the governing equation and boundary conditions. The derivation is described
below.

The total potential and surface elevation can be expressed as a superposition of the

potentials and elevations of a short-wave and a long-wave components,

’@ ﬂ‘ﬁl ‘?‘ ‘I)g? {E.g}
¢ =+ G, (2.10)

where the subscripts 1 and 3 stand for the long-wave and short-wave components, re-

spectively.
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The governing equation and boundary conditions for ¢ are the same as (2.1)-{2.4)

except that the bottom boundary condition for the short-wave component is changed to
V&, — 0 as z — —h, (2.11)

because the water depth is deep with respect to the short-wave component.

The effect of the interactions on the long-wave component is known to be at most of
third-order in wave steepness (Zhang et al. 1993; Hong 1993). Hence, the solution for
the long-wave component at the second-order is the same as a single Stokes wave train.
By expanding the free surface boundary conditions at the undisturbed long-wave surface
and subtracting the undisturbed long-wave surface boundary conditions, we obtain the
governing equation and boundary conditions for the short-wave component, correct to

the second order in wave steepnesses,

Vidy=0, —~h <2<y, (2.12)
%, 5@,
Tt TGtV Vit 5l
1 , , 0%®s, B
+“2‘“!V<I)3‘ + atazC3 =0 at z = C}, (2.13)
86 0%
% 01 L G4y - Vo + Vs - Vi
bt Oz
5 )
- 62; G+ Vads Vils — 8223{'3 =0 at z=(;,  (2.14)
V&;— 0 as z — —h, (2.15)

where V), is the horizontal gradient epera.i:éx“ The last two terms on the left-hand-sides
of {2.13) and (2.14) are of second order and describe the interaction of the short-wave
component with itself. Thus, they only contribute to the second harmonic of the short-
wave component and consequently can be ignored in the derivation of the modulations of
the first harmonic of the short-wave component. The remaining nonlinear terms in (2.13)

and {2.14] represent the interaction between the long-wave and short-wave components.




Deterministic Decomposition and Prediction of Deep Water Waves 11

Because the second harmonic of the short-wave component is of the second-order, the
modulational effects on the second harmonic are of the third-order. The solution for the
second harmonic of short-wave component up to the second-order is the same as a single

Stokes wave and its derivation is omitted here for brevity.

From Hong’s study (1993), we anticipate that the modulated short-wave component

potential and elevation can be expressed as,

®3 = Agfae® e sind,, (2.16)
(s = as(1l + e1bcos #;) cos 53, (2.17)
where
fa=1+¢rcosly, (2.18a)
J
fe=z—aycosb; +e1zc058; Y v (k1 2y, (2.18b)
i=0
- J41 )
63 = kaméﬂ -+ ksgy - O'3t -+ 53 -+ kgag sin 81 Z pj(k;_z)'j, (2.186)
i=0
53 = k3z$ -+ k3yy - 0"3t -+ 63 - ksdlpo sin 61 + AEl sin 91, (2.18(1)

As is the average potential amplitude of the short-wave component, f4 represents the
modulation of the potential amplitude, fi. denotes the effects of the changes of the
short-wavenumber and the relative still water level due to the presence of the long-wave
component. 83 and gg arve the modulated phases for the modulated velocity potential and
surface elevation, respectively. They are modeled as the sum of the corresponding linear
phase and the modulation by the long-wave component, b stands for the modulation
of the elevation amplitude and A is the phase shift between the elevation phase and
the potential phase at the free surface. The parameters, p, 7, r and b, can be further

expanded in terms of the frequency ratio of the long-wave to the short-wave component,
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Ay
2T 41)y-27 2J 24 2J 2J
Pi= D Ainy L= D Am, T=3 A, b=3 A", (2.19)
= =0 n=0 n=0

where the summation is set to be zero if its upper limit is negative.

Since the phase modulation approach is intended to describe the interactions between
short-wave and long-wave components with quite different wavelengths, A is expected
to be relatively small. Generally speaking, it is smaller than 0.5. Theoretically, the
summations in (2.18b), {2.18¢) and (2.19) can be extended to infinity. But in reality
they have to be truncated at a finite order. Equations (2.18b) and (2.18¢) involve double
summations and the series in both summations converge if A < 1, because the magnitude
of k; z also depends on A. Therefore, to achieve an accuracy at certain order of A for the
solutions of the potential and elevation, the truncations of the summations in (2.18b),
(2.18c) and (2.19), have to be made consistently. For example, the truncation of p; in
(2.19) depends on the subscripts j and the truncation integer J in the summations of

(2.18b) and (2.18c). The reasons are elaborated below.

To ensure the value of the short-wave potential to be nontrivial, the absolute value
of its exponential index ks;z can not be too large. i.e. the index should be gf 0O(1).
Because of k1/k3 = a;A?, we have |kiz| ~ O(a;A?). Furthermore, because the water
depth is intermediate with respect to the long-wave component, a; ~ O(1). Hence,
kyz| ~ O(A*) and (kiz)? ~ O(A%). If p; is truncated at 2(J + 1) — 27, then p,., should
be truncated at 2(J +1)—2{j+1}. As aresult, p;{k12)7 and pjy;(k; 2} are accurate up
to the same order of magnitude, i.e. O(A*/+Y)). Likewise, the truncation in +; should be
made accordingly. Since 7 and b only involve a single summation, to achieve the same
accuracy their summations in (2.19) are truncated at 2J. As a result, the truncated

solutions for the short-wave potential and elevaiion are accurate up to O(g;A%).
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Substituting (2.16} into the Laplace equation (2.12), we obtain

Vi@, = Eek*fusin d, cos Bre1k2 + Fe* I cos by sin e, ki = 0, (2.20)

and the coefficients E and F are given by

J J .
E m~,\4a§f - 2T ij(klz)j + Aza;[l - Z Tj(klz)3+1}

i=0 F=0

4 J-1
+2) (7 + Dyi(kazy +A%ar Y (5 + 1) + 254 (kaz), (2.21a)

=0

-0

J J
F=—2 o1 + 2T[1 ~ Y y;(k1z)*Y] ~ Ny Y pilkaz)

F=0 =0

7 It
+23 gpi(kiz) ™t + Nay Y 55 + pjar (krz) (2.21b)

j=1

=1

where I’ was defined in (2.6d). Splitting (2.20) with respect to sin f; and cos §,, we have

E = F =0, which can be satisfied by further letting all coefficients of the terms, (k;2)™,

be zero. For E = 0, we get the following equations,

O(1):
O(k" 2™} ¢

Similarly, for F = 0,

o1
Ok 2™

—2lpg - X‘af‘r + Xay + 270 + 2X%0yy; = 0, (2.22a)
—2pm — XMarym—1 + 2(m + 1)y

+X2a;(m 4+ 1){m + 2)mes = 0, m=1,2,---  (2.22b)
o~ 20 7T — Aoy pg + 2p; + 2XPanp, = 0, (2.23a)

2D~ Aaypm + 2(m + 1)pmas
+ X (m 4 1) (m + 2)pmas = 0, m=1,2,-- (2.23b)

Equations (2.22) and (2.23) can be further expanded in terms of A. From (2.22a), we
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obtain the following hierarchy equations

o(1) :
O\ :
0% -
0()%) :
o) :

—2Tpos + 2700 = 0,

~2Tpo1 + 2701 = 0,

=2po2 + a1 + 2702 + 2017110 = 0,
~2Lpos + 2703 + 20771 = 0,

—2Tpon + 2¥o — @3 Tnes + 20012 = 0, n > 4.

Similarly, (2.22b) can be expanded as, for m = 1,2,---,

O(1): —20pmo + 2(m + L)yme = 0,
O(A): —2pmy + 2(m + 1)ym1 =0,
O(A") 1 ~20pmpn — A1 Ym-1,0-2 + 2{(m + 1)¥mn

+(m + 1){(m + 2)ar¥mitn-z = 0, n 22

In the same way, (2.23a} is further expanded as

0(1) :
o) :
O(x") :

2p19 + 20 = 0,
2PI{I = 03
2015 — 204 Tn oL’ ~ aipon_z + 2a1p259 = 0, n 2z 2

and so does (2.23b) for m = 1,2,---

1) : =10 + 2 + L)prmyr0 = 0,

O(;\) H *21’7,,‘%;,; -+ 2(m + I)pm+1'1 = 0,

O(A") ¢ ~2 Y10 ~ @1Pmne2 + 2Am + 1)prian

+{m 4 1}{?‘2’5 3 E}czipm%z’n_,g s éﬁ & % 2.

(2.24a)
(2.24b)
(2.24¢)
(2.24d)
(2.24e)

(2.25a)
(2.25b)

(2.25¢)

(2.26a)

(2.26b)

(2.26¢)

(2.27a)
(2.27h)

{2.27¢)
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The simultaneous equations (2.24)-(2.27) can be used to express all coefficients of
p; and «y; in terms of po{poo, po1,---,pon), and 7(7o, 71,72, *, Tn). Later, it will be
shown that the coefficients ps and 7 can be determined using the free-surface boundary
conditions. Thus, the solution for the potential can be obtained. The procedures of

expressing the coeflicients of p; and <y, in terms of po and 7 are detailed below.

To facilitate the description of the procedures, the coefficients pi; and -y;; are described
as the elements of the matrices p and v, respectively, as in (2.28), where 7 and j are
the row and column numbers of the element, respectively. The ith row elements in P
and 7 matrices belong to the coefficients p; and +;, respectively, as shown in (2.19). The

description is divided in two parts,

(( Poc Poi Poz --  Pon ) (Yoo Yo1 Yoz --- Yon
Pio P Pz +es Pin Yo Tii Yiz «+v Yin
{p}= 1P pu P22 . paml, {¥}=]70 Yz -e- Yo (2.28)
\Prg Pl Pn2 o Pan L Yne Tni Tz -e- Ynn J

(a) Noticing that the solutions for p;5 and py; are explicitly given by (2.26a) and (2.26b),
the solutions for all elements in the first two columns (j = 0 and 1) of the matrices 2
and v can be expressed in terms of poo or pey (which are the elements of py) explicitly
by solving the simultaneous equations (2.24a), (2.24b}, (2.25a), (2.25b), (2.27a) and

{2.27b}. The results are given below.
PRI, iisevenand i > 2, 7=0,1,
pii =3 L iisoeddandi>2, j=o, (2.29)

L0, itisodd and 7 > 2, 7 = 1.
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G-’“’j?'%‘ﬁ[‘iu, tisevenand 8,: >0, 7 = 0,1,

g = ”GI%F’ iis odd and i > 0, j = 0, (2.30)
g, tisoddand ¢t > 0, 7 = 1.

(b) The remaining elements in the matrices p and + are expressed in the recursive
relations. There are three rules for obtaining these recursive relations based on the
simultaneous equations (2.24c)-(2.24e), (2.25¢), (2.26¢) and (2.27c). First, an element
either p;; or v;; can always be calculated in terms of pyyr and ypy if 20+ 7 > %' + 5.
Reminding that the first subscript ¢ implies the corresponding element multiplied by
(k1z)* which is of O(A*) and the second subscript j indicates the multiplication of
M, thc: combination of the two subscripts, 2¢ + j, indicates the order of A associated
with the corresponding element. Hence, this rule is expected because in a perturbation
method the coeflicients associated with higher order terms should be solved in terms
of coeflicients associated with lower order terms. However, there exists a scenario: in
each of the above equations there are two elements which belong to the same matrix
and whose combinations of the subscripts (2i + j) are the same and the largest. Hence,
the second rule for deriving the recursive relations is how to decide which of the two
elements is treated as an unknown. When the two elements in an equation has the same
greatest combined value of the subscripts, i.e. 2{ + j = 2¢' + j/, then the element has
a greater second subscript j (j > j') is calculated based on the element of a smaller
second subscript. The reason why the element with a smaller second subscript 5/ is
always known earlier than the one with a greater second subscript j is because the
elements in the first two columns of the matrices { p and ) have already been solved
as described in part {aj. Therefore, for the elements with the same combined value of
the two subscripts, the recursive relations for the elements propagates from the left to
the right of the matrix. Finally, as shown in (2.25¢), two elements pm, and v, , have
exactly the same subscripts and their combination are the greatest. Thus, the third

rule for obtaining the recursive relations is that 4, is calculated based on the results
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of pmn. This is because that the calculation of the corresponding p,, . can be made

without knowing ¥, . in advance as indicated by (2.27c¢).

According to the above three rules, the order for calculating the elements in the
matrices p and -y is determined and summarized in (2.31). The number at the location of
an element indicates the relative order to be calculated in using the recursive relations.
For clearness of printing, the corresponding elements are not printed. It should be
reminded that the elements in the first row of p are treated as known and the elements

in the first two columns in both matrices have been solved in (2.29) and (2.30).

[Poo  Por  Poz  Pos  Pos  Pos  Pos  Por  Pos
pe P (1) (2) (4) (6) (9) (12) (16)

r=|ro on (& () (8 (1) (15) ... . (231a)
pso pn (7) (10} (14)

\pso pu (13) (17)

[To vy (1) (2} (4 (6) (9) (12) (16) (20) ...\
Mo yu (3) (8 (8) (11) (15) (19)
{7} = |70 72 (7) (10) (14) (18) ... . (2.31b)
0 yar (13) (17)
21 . I H (21) /

Substituting (s and ®; into the boundary conditions (2.13) and (2.14) and collecting

the terms of the same order in terms of the wave steepness, £,, we obtain the following

equations

O(I) : A3€?’3 = {dad, (2.323)
0(5;) : —‘Ag(fgf' - A3k3k1_101 (p(} - CX;F) + azg (b - 61;1) = g, (2.32b)
Azoir — azgl = (. (2.32¢)
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O(1) : aaos = Asks, (2.33a)
0(81) M “Agkg(?’ + ’}lﬂ) e as (0'36 + 0'3{.'3.) -+ nggk{la’l (pa - alf‘) = 0, (2.33b)
""A;;ka (f‘ -+ ;01) 4 630'3A + 030’1(5 — 071) = 0. (2.33(2)

where the equations of Ofe,) are further split with respect to the factors of sin 6, and

cos §;. Equation (2.32a) renders the relationship between the average potential and

elevation amplitudes,

Ay = 24, (2.34)
K]

Combining (2.32a) and (2.33a), the linear dispersion relationship is obtained: o2 = gks.
Equatic‘:-n (2.32¢) relates the phase shift A to 7,

A = Ar. (2.35)

Noticing A? = a7k /ks, (2.35) and (2.34), equations (2.32b), (2.33b) and (2.33c) can

be reduced to,

—1r—=Alarpe + AT T + b — ot =0, (2.36a)
~ 7 =7 + b+ ar' A pg + AT — AP =0, (2.36b)
=T — p1 + Ar 4 Ab — Xy =0. (2.36¢)

Although the short-wave potential ®; depends on many parameters (p, and Vs )
which are to be determined using the recursive relations in terms of pg and +, it is noted
that only po, p; and 7, appear in the free-surface boundary conditions. Subtracting
(2.36a) from (2.36b} and subtracting (2.36¢) divided by A from (2.36b), we eliminate b

from the system of equations.

— o+ o + 207 A py + AP — 207D =0, (2.37a)
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- 27 — Yo+ a;lA*lpe + Aoy 4 oy + A =0, (2.37b)

Since vp and p; can be calculated in terms of ps and r using the recursive relations
resulting from the Laplace equation as described earlier, there are only two unknowns

r and pg in (2.37) and hence they can be solved exactly. The proc;edures are briefly

described below,

Equations (2.37a) and (2.37b} can be further perturbed in terms of A. From (2.37a),

we have the following set of equations,

O(\) : poo = e, (2.38a)
00°) : po = glewro ~ 1), (2.38)
ou);%zzéaﬂm, (2.38¢)
qu:mwim%q%n—m4L n>2 (2.38d)

Similarly, equation (2.37b) can be perturbed into the following set of equations,

Ot poo = —aypro = aqT, (2.39a)
o) : m = é(a;‘ “por + P11 — Yoo + 1), (2.39b)
OA): n = %(aiipw + p12 — Y1) (2:39¢)
O(\"): 7 = %(afzp(}n—{»—i + Pratt = Ton = Ton-2), n>2  (2.309d)

Noticing o0 = ['poe = ey from (2.24a) and (2.39a), po; can be calculated from (2.38b).
Because poo and poy are known, the coefficients v;; {7 = 0,1) and py; (5 = 6,1;2 > 2)
can be obtained using the recursive relations shown in (2.29) and (2.30). Then pos and
7o can be calculated as shown in (2.38¢) and (2.39b). Based on the recursive relation

{2.26¢), we obtain
Pz = {F‘r”rﬁ + 2?9@ - f?zﬂ} {2.40)
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Then 7; can be calculated from {2.39¢c). The solutions for pyny1 and 7, for n > 2
can be alternatively obtained from lower to higher n using (2.38d) and {2.39d). In
the computation, o, and p1,41 are computed using the recursive relations described
earlier. The solutions for pi; ( > 2;7 2 2) and ; (7 > 1) can also be calculated
using the recursive relations. Substituting pe, and 7, (n = 0,1,..) into (2.36a}, b,
(n=10,1,---) can be calculated.

The final solutions for p, 7, 7, and b are presented in Appendix B. The potential
and elevation of the modulated first-harmonic short-wave components can be readily
obtained from (2.16), (2.17) and (2.18) after p, 7, 7, and b have been evaluated. The
modulated dynamic pressure, velocity and acceleration can be derived from the modu-

lated potential and are presented in Appendix C.

2.1.3 The Hybrid Wave Model Solution

When applying the hybrid wave model to an ocean wave field, its spectrum is usually
divided into three regions: pre-long, powerful and restriction regions from low to high
frequency as sketched in Figure 2.1. The powerful region involves all free-wave compo-
nents with relatively significant wave energy and is further divided into four bands, i.e.
long-wave band one (L1) and two (L2) and short-wave band 1 (S1) and 2 (S2), starting
from low to high in the frequency domain. For most ocean wave fields, the spectral peak
is usually inside the band L1. The amplitudes and especially the wave steepnesses of the
free-wave components in the pre-long wave region are very small. Hence, the interaction
of a free-wave component in the pre-long wave region with any free-wave components is
insignificant and hence neglected. 1t is also assumed that the wave components in the
restriction region are mainly the bound-wave components resulting from the interactions
among the free-wave components in the wave bands of L1, L2, S1 and S2. Therefore,

the cut-off frequency for the free-wave components is that at the end of S2.

Two free-wave components located in the same frequency band or in neighboring
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Figure 2.1: Band division of directional hybrid wave model.

bands are relatively close in the frequency domain and hence the interactions between
them are calculated using the conventional perturbation approach. While two free-wave
components located in two different bands separated by at least one other band are
relatively far apart in the frequency domain and, therefore, are calculated using the
phase modulation approach. For simplicity of illustration, we assume that a frequency
spectrum for an irregular wave field is divided into three wave bands, say, two long-wave
bands (L1 and L2} and one short-wave band (S1), in describing the solution for a wave
field of multiple free-wave components. It is straightforward fo extend the solution to
a wave fleld consisting of more than three wave bands. Following the earlier discussion,
the interactions between the free-wave components in L1 and L2 are calculated using the
conventional perturbation method, likewise, for the interactions between the free-wave
components in L2 and S1, respectively, and between the free-wave components in S1.

However, the interactions befween the two free-wave components located respectively in
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L1 and S1 are computed using the phase modulation method.

Assuming there are M, and M, frequency increments in L1 and L2, and N fre-
quency increments in S1, respectively, and there is only one free-wave component at

each frequency, the total velocity potential of a directional wave field can be written as
® = Pp + Pra+ Pzt + Bsuzz + Pss, (2.41)

in which ®;; and &1, are the resultant total potentials, including the potentials of
all free-wave components in L1 and L2, and the nonlinear interactions between them,
®s171 is the modulated short-wave potentials by L1 in S1, ®g;y, is the resultant poten-
tial resulting from the nonlinear interactions between L2 and S1, ®g5 is the resultant

short-wave potential from interactions between the free-wave components in S1. These

potential can be calculated by:

3 a;g coshik;(z+ h)] . 3ajg;cosh[2k;(z + h)]
Putfn= ) { o cosh(izh) 0T sinh*(k;h)

=1

2 2

sin(ze,-)}

+5§2 § ' cosh(|k; — k;|h) sin(6; — ;)
aajo;  cosh(lk; +ki|(z+R)] . |
-+ 9 A:fM cosh(lkj + k;[h) Sln(g_, + 9,) s (2,42)

where M = M; + M, A;; and A;y; are the same as A(_) and Ay, given in (2.6a)

except that the subscripts 1 and 2 are replaced by ¢ and j, respectively.

M4N
Bsii= Y. &, (2.43)
ALl
where ®; iz determined in the same way as ®; in (2.16) except that the modulation

factors f4 and fi, and the modulated phase 53- need to be extended to allow for the




Deterministic Decomposition and Prediction of Deep Water Waves 23

modulation by multiple long-wave components in L1,

My

f.f!j =1+ Z £;Ty; €O8 5,‘, (244)
i)
My J

fkj =E — Z {a,— CO8 9,‘ -+ E;z cos 9,' [E ’Y{ij(kiz)[]} H (2'45)
FES e ]

é;- mk}-mz + by — ot + 65 + Z !:k a; sin 6; Z Piij k;z) ] (2‘46)
i=1 1=0

where the subscripts of ¢ and j stand for ith long-wave component and jth short-wave

component, respectively.

MiN 3aie; cosh{2k;(z + A MN -1 M MN
I  aa LT S SIS S vl »
=M1 sinh®(k;h) JEMA2i=M+l  j=M+1i=M+1
%a0;  coshlk; —kil(z+A)] .
{ 2 AJ -1 cosh([kj _ k;ih) S:{Il(gg !9:)

coshllk; + kif(z+R)] . . .
cosh(k; + k) 9*’} - (2.47)

a,a,

oy
Ay

Similarly, we can express the surface elevation ( as
¢ = (o + Cz2 + (5121 + Csarz + (s, (2.48)

where the right-hand-side terms are corresponding to the potentials with the same sub-

scripts in (2.41).

gﬂi + Cﬁ? Z a5 Cos 9

M 20’ 3cosh{2k;h) 1 '
% LA 28.
+§ 4g E - sinh*(k;h) Siﬁ}lz(kjh}} o8
M 21
Z{k (—(1 = N Ajoi + My cos(6; — )
J«»?iwl 2“3‘

ia:k;
BI04 Ny + Mg cos( 4} (2.49)
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M4N M, -
(sain= Y, a;(1+ Ze;bj,- cos §;) cos 8, (2.50)
=M1 i=1

where b; is the value b for jth short-wave component modulated by ith long-wave

component and

- Af M
9_,- = kj,,.r -+ kjyy - ot + 53' + Z kja;po;; sin g; 4 Z £; Agj sin §;, (2.51)

=1 i=1

in which poj; and A;; are the coeflicients py and A of jth short-wave component modu-

lated by ¢th long-wave component, respectively.

N o2k, M4N -1 M MiN
(sir2 + {55 = w%wcos 20, +0 Y, S+ > >
F=1 FrAM42 =M1 F=My 41 =M1
x {%[—(1 — A)Aj-i + M;..i] cos(8; — 6;)
20‘._,‘
a,—ajkj
+ (1 + A)Aiys + Migg] cos(fs +65) ¢ . (2.52)
7

The hybrid wave model solutions for pressure, velocity and acceleration can be readily

derived from the velocity potential, and are presented in the Appendix C.

2.2 Directional Decomposition
2.2.1 Estimation of Directional Energy Spreading

Wave directionality is an important property of short-crested ocean waves. A wavenumber—
frequency energy specirum S is defined as a function of wavenumber & and frequency o,
5 = S(k,o}, which is also known as a three-dimensional Fourier spectrum or a condi-
tional spectrum (Irani ef al. 1986). If the dispersion relation is invoked, a wavenumber—
frequency spectrum reduces to a directional spectrum or a two-dimensional Fourier spec-
trum, which describes wave energy distribution as a function of wave propagation direc-

tion [ and frequency.
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Many methods have been developed for resolving wave directionality. But, since
the initial multidirectional measurements and analysis in the 50’s (Chase ef al. 1957)
no method for the analysis of multidirectional seas has been universally accepted (van
Heteren et al. 1988, Herbers & Guza 1990, Brissette & Tsanis 1994, Goda 1994). As
pointed out by Herbers & Guza (1990), the fidelity of physically plausible directional
spectrum estimates that are consistent with the observations is often not limited by the
estimation technique but by the resolving power of measured array data, which depend
on the number of measuring instruments and their layout. In practice, the resolution
of the instrument array is often limited because the in sifu instruments are always
sparse; and the statistical uncertainty in the data is significant because of the limited
duration of stationary conditions. However, two methods, Maximum Likelihood Method
(MLM) and Maximum Entropy Method (MEM), are most widely used because of their
relatively high resolution power for estimating the directional wave spectrum and their
flexibility. Both of these two methods have been extended to be applicable to multiple
array data of different wave properties, and are named as Extended Maximum Likelihood
Method (EMLM) (Isobe et al. 1984) and Extended Maxirnum Entropy Method (EMEM)
(Hashimoto et al. 1994), respectively. Although EMEM can detect partially reflected
waves more accurately by resorting to additional physical constraints than EMLM does,
the latter is much less intensive in computing than the former and has the same resolution
power as the former in most scenarios. Therefore, the EMLM developed by Isobe et al.

(1984) is employed in this study to estimate the directional spectrum of a measured

wave field.
2.2.2 The Extended Maximum Likelihood Method

According to linear wave theory, the Fourier transform of a wave property, F, at the

location m can be expressed as

Fo(o) =S Holo,85, by 2)e” B % 25, 8,), (2.53)

3
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where f; is the directional angle of the jth wave component at the frequency o, H,,
is a linear transfer function of relating the wave amplitude to the wave property ¥
and depends on the frequency, wave direction, water depth h and vertical coordinate
of .the location, z,,. k; is the wave number vector of the jth wave component, k; =
(k;cos By, k;sin 3;). ®m = (Zmm,¥m) denotes the horizontal coordinates of the location,

and Z(o, ;) is the complex amplitude of the wave component.

The cross-spectrum for two different wave properties recorded respectively at loca-

tions m and n is defined as,
_ .o —ike; Lo s iR ,
Coan(0) =< Fpn - Fy >= Y Hpe Hi%mHre S(e, 85}, (2.54)
i

where <> and the superscript * denote the ensemble mean and the complex conjugate,

respectively, and the directional wave spectrum is
S(e,B;) =< Z(0,8;) - 2*(0,55) > . (2.35)
In (2.54), it is assumed that
< Z{e,B;) Z*(0,B;) >= 0 for j 5 ', (2.56)

because Z is a random variable (Isobe ef al. 1984). Therefore, a cross-spectrum matrix
{C{o}} of size {M x M) can be formed from M distinct measurements as shown in
{2.54). Inverting the cross-spectrum matrix by the MLM. Isobe et al. (1984 found that

the directional wave spectrum can be estimated as

A

QT (o, B 0]} Qe 5) (2572)

Sigﬁﬁj) ==
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with
C;z(a')
Ao , 2.57b
S {1V [@T (@610} Qo 85)]} -

7

where the superscript T and —1 denote the transpose and inverse of a matrix, respec-
tively, @ is a vector of length M and {Q(c,8;)}m = Hnlo, 5j,h,z)e“‘kf‘z“‘, Cu(o) is
the power spectrum of wave elevation measured at location [.

In this study the directional resolution of EMLM is set to four degrees, i.e. AS =
Bi+1— B; = 4°, which gives ninety directional components per frequency. The number of
discrete frequencies is determined by the duration of the time-series and the cutoff fre-
quency. To reduce the computation time, a limited number of discrete directional wave
components at each frequency are used, based on the computed directional amplitude
spectrum. For narrow directional wave energy spreading, one directional wave compo-
nent for each frequency might be adequate. While for broad directional wave energy
spreading, more than one directional components at each frequency are employed to
represent the spreading. Hence, the number of directional wave components to be used
at each frequency depends on the directional spreading of the measured ocean waves.
After the number of directional wave components at each frequency is determined, the
wave amplifudes are rescaled to conserve the total energy of the spectrum. The details
of reducing the number of discrete directional wave components at each frequency will

be described in § 3.

2.3 Determining Initial Phases

Wave phase information plays a very important role in recovering and predicting the
properties of ocean waves in the time-domain. Wave phases are the fingerprints of
the ocean wave process and uniquely determine the events described in wave data.
For unidirectional waves, the initial phases can be determined by the FFT. While, for

multidirectional waves, the initial phase information is eliminated due to the use of the
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cross-spectra during the directional decomposition. Therefore, the initial phases need to
be recovered after the directional wave spectrum is obtained.

In this study, a least square phase fitting method is employed to determine the initial
phases of free-wave components. The initial phases of the free-wave components at each
frequency are determined by minimizing a target function at this frequency. The target

function is defined as

T AN A
R, = ( ’“) (wﬂ‘-) 2.58a
3; 7)) \ & (2.58a)
Ajp. - Z Hjanme'( nemBjtenm) Ejnei'ﬁjn + gjm (2.58b)
mee]

where'Aj, is the difference between the recovering property, i.e. the superposition
of computed linear and nonlinear results, and the corresponding measurement of nth
frequency at the jth sensor. J is the total number of sensors whose measurements are
used in the decomposition and M the total number of the free-wave components used
at nth frequency. H; is the transfer function at jth sensor, and @nm, knm, and én,, are
the amplitude, wave number vector and initial phase of the mth free-wave component
at nth frequency, respectively. x; is the horizontal coordinates vector of the jth sensor.
Ej, and ¢;, are the measured Fourier modulus and phase at nth frequency of the jth
sensor, respectively. &;, is the second-order nonlinear wave-wave interaction effect of
nth frequency at the jth semsor, and can be calculated using the hybrid wave model in
§2.1 based on the free-wave components. Minimization of R, is carried out by using
the Polak-Ribiere conjugate gradient minimization procedure at each frequency. (Press

et al. 1992). In the first iteration £;, is unknown, thus set to zero.
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3 Numerical Schemes

The measured wave properties are actually the results of superposition of free-wave
components and their nonlinear interaction contribution. As discussed in § 2, to decouple
the nonlinear wave-wave interaction effects from the measured signals, the free-wave
components have to be known. While only after the nonlinear effects are decoupled from
the measurements can the free-wave components be obtained. Therefore, the numerical
realization of the deterministic hybrid wave model has to be iterative. The schematic

flow chart of the numerical procedure is shown in Figure 3.1.

¥

First, the EMLM is used to determine the wave energy distribution as a function of
the direction at each discretized frequency based upon the input measurements. Since
the EMLM does not retain the initial phases of free-wave components, the initial phases
are recovered by fitting the prediction with the input data. Once the spectrum and
initial phases are obtained, the effects of the nonlinear interaction among free-wave (lin-
ear) components are computed and subtracted from the resultant wave properties, i.e.
measurements. At the first iteration the measurements are used as the input for the
directional decomposition. After that, the input to the EMLM is the modified measure-
ments with the nonlinear wave effects being decoupled. At each iteration, the free-wave
components are recomputed using the EMLM and the phase fitting, and then the non-
linear effects are updated using the formulas described in §2.1.3. The differences of the
nonlinear effects between the two sequential iterations are examined. If the differences
are smaller than a prescribed tolerance error, the decomposed free-wave components are

accepted and the iteration terminated. Otherwise, the input measurements are remodi-

fied and the iteration continues.

Three major steps in the wave decomposition: selection of representative directional
free-wave components, initial phase computation, and decoupling of the nonlinear effects

of wave interactions from measarements are detailed below.
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Figure 3.1: Flowchart of the numerical scheme.
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3.1 Selection of Representative Directional Free-Wave Com-

ponents

As discussed in §2, the directional resolution is set to four degrees for the EMLM
decomposition in this study. Therefore, there are 90 directional wave components at
each frequency. The number of discrete frequencies is determined by the length of the
time series as well as the cutoff frequency. In this study we only use a small number
of directional wave components, say 1, 3 or 5, at each frequency for computational
efficiency. The computation time is roughly proportional to the square of the number of

directional wave components at each frequency.

Given the directional energy spreading, the component with the largest amplitude
at each frequency, defined as the most energetic component, can be identified and its
propagation direction is taken as the main direction of wave propagation at this fre-
quency. H just one component is considered at each frequency, its direction is the same
as the most energetic component. In order to conserve the energy, the amplitude of the

representative component must be rescaled. The rescale factor is given by

(3.1)

where A; and A, are the amplitudes of the ith directional free-wave component and
the most energetic free-wave component, respectively, at this frequency, M is the number
of directional wave components at each frequency, M = 90 in this study. The amplitude

of the representative free-wave component at this frequency is pd e

When the directional spreading is narrow, one component at each frequency is a
good approximation. While the directional spreading is wide, more components at each
frequency should be used to achieve a better approximation. The criteria of determining

how many free-wave components should be used at each frequency is elaborated below.
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The square root of the normalized second directional angle moment is defined as, at each

frequency,

M

> [A(Bi ~ Bo))?
= | = , (3.2)

M
2 A

$u=]

where 3; and 3, are the directional angles of ith directional free-wave component and -
the most energetic free-wave component, respectively, at the frequency. If there is only
one directional wave component at the frequency, the second moment is zero. If the
energy spreading is uniformly distributed in all directions, the second moment is 2w /3.
The value of II defined in (3.2) indicates the extent of directional spreading. When it
is relatively small, the wave field at this frequency has a narrow directional spreading.

While 1 is large, it has a relatively wide spreading.

When the directional spreading is wide, more than one free-wave components at each
frequency are selected to represent the directional spreading. The angular moments are
also employed to determine the directions of the free-wave components in additional to
the most energetic component at each frequency. For the purpose of computation, the
index of the M free-wave components at each frequency resulting from the directional
decomposition is shifted so that the index of the most energetic wave component is
M/2 + 1 and each one half of the amplitude of the wave component in the opposite
direction of the most energetic component is placed at 7 = 1 and 7 = M + 1, respectively.
Hence, there are equally M/2 wave components at both sides of the most energetic
free-wave component. For simplicity, we only show the procedure of selecting N free-
wave components at the left-hand-side of the most energetic free-wave component. The

procedure for those at the right-hand-side is virtually identical.
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The normalized first and second angular moments M; and M, are defined as

M/2
> AHB; - Bo)

~
My = 7 , (3.3)

> A
=1

M/2
> AYB; ~ Bo)

—~
M, =12 oy , (3.4)
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where kAj and f3; are the amplitude and directional angle of the jth component at the
left-hand-side of the most energetic component, respectively. The ratio, M;/M,, is
chosen as the direction of the leftmost representative free-wave component. If N > 1,
the directional angles of the remaining N — 1 representative directional wave components
are evenly distributed between the angles of the leftmost component and most energetic

component. Because of the discrete angles used in the computation, the direction is

rounded for the selected component.

Once all the directions of 2V 4 1 representative components have been determined,
their amplitudes are rescaled, i.e. multiplied by a factor p, to conserve the energy at

this frequency. The rescale factor is

Y%
L A
po= J M2§_fl y (35)

BZ,
masl

where B,, is a subset of A;, and is defined by B,, = A; where B,, is in the same direction

as A;.
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3.2 Initial Phase Fitting

The initial phases of free-wave components are computed after their amplitudes and
directions have been obtained. As discussed in §2.3, the initial phase is determined by
minimizing the target function at each frequency, which is the difference between the
measurements and the corresponding predictions. The prediction is the sum of free-wave
components and their second-order nonlinear interactions. Assuming that the number
of wave measurements is J and the number of wave components is N at each frequency,
we have 2J real equations to solve for N unknown phases. The minimum number of
measurements used as input is three. For flexibility, NV is not required to be equal to
2J. Therefore, the set of simultaneous equations may be an over-determined problem if
2J > N. Hence, a least square approach is employed to solve for the initial phases by
minimizing the target function. The minimization is performed by systematically varying
the magnitudes of the initial phases in a multi-dimensional space of dimension N. The
search for the approximate solutions of the initial phases is accomplished when the target
function is smaller than a preset error tolerance. The computation is accelerated using a

conjugate gradient minimization algorithm, known as the Fletcher-Reeves-Polak-Ribiere

method (Press et al. 1992).

3.3 Decoupling Nonlinear Effects

Once the amplitudes, directions and initial phases of the free-wave components are
obtained, we can compute the nonlinear interaction effects at the locations where the
measurements are used as input. As discussed in §2.1.3, the spectrum are divided into
- several bands and the wave interactions among these bands are computed according
to the hybrid wave model. Although the interactions of the pre-long wave range or
restrictive range with other bands are neglected because they are not significant, the
difference- and sum-frequency type interactions of the long-wave bands and short-wave

bands can have their effects in these two frequency ranges and hence these effects are
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subtracted from the measurements. Thus the free-wave components in the pre-long
wave range may be quite different from the corresponding ones obtained directly from
the FFT of the measurements. The criteria of the division of the wave bands is similar

to that described by Zhang et al. (1996a) and is not repeated here.

As it is known that the modulation of a short wave by a long wave is significant and
the influence of the short wave on the long wave is at least one order higher (Zhang
et al. 1993), the decoupling of the nonlinear effects is performed in the order from the
longer wave band to the shorter wave band. In conjunction with the hybrid wave model,
the potential and elevation of wave components in the long- and short-wave bands are
formulated differently. Consequently, the decoupling procedures are different in different

wave bands.

The conventional perturbation method is used to compute the nonlinear interactions
between two free-wave components located inside the same band or in the neighboring
bands. The result of nonlinear effects is obtained in the frequency domain. The ampli-
tude and phase spectra from the Fourier transform are converted to cos and sin spectra

a; and a} to facilitate the computation, i.e.

a; cos(k; - @ — ot + ;) = aj cos(et) + af sin(et), (3.6)

where
a; = ajcos(k; - & + B;), (3.7a)
ai = a;sin{k; - + 5], 13.7b)

and thus af and a} can have negative values. The nonlinear contributions are directly
subtracted from the cos and sin spectra of the measurements.

The phase modulation method is employed to compute the interaction between the

free-wave components located in two different bands separated by at least one other band.
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The modulation of each short-wave components is calculated in the time domain using
the equations described in §2.1.3. There are two approaches to decouple the nonlinear
effects due to the modulation of short free-wave components from the measurements.
When the DHWM uses a single free-wave component at each frequency, the decouple
process is virtually identical to that described in Zhang et al. (1996a). The modula-
tion of the short-wave components by the long-wave components is transferred to the
frequency domain from the time domain using the FFT. The unmodulated free-wave
components in a short-wave band are then obtained by solving a set of simultaneous
equations in the frequency domain, [C}{As} = {Ar}. The coeflicient matrix, [C], of the
simultaneous equations is determined by the long-wave components which modulate the
short-wave components, and the coefficient vector, {Ag}, at the right-hand-side of the
equations is the modified measurement in the frequency range of the short-wave band.
The nonlinear effects due to interactions between long-wave components have already
been subtracted in the modified measurements. Detailed description about the algo-
rithm of computing the coefficient matrix can be found in Zhang et al. (1996a). After
the free-wave components in the short-wave band, {4}, are calculated, the modulation
effects in the frequency domain outside the frequency range of the corresponding short-
wave band are computed and subtracted from the resultant wave spectra. Furthermore,
the second harmonics and the interaction between the free-wave components within the
same short-wave band are calculated and decoupled from the resultant wave spectra.
However, when multiple free-wave components are used at each frequency, the above de-
coupling method can not be directly applied. An alternative method of decoupling the
nonlinear effects due to the modulation of short-wave components is to directly subtract
them from the measurement in the time domain. The differences between the elevations
(or other measured wave characteristics) of modulated short-wave components and the
corresponding unmodulated components are viewed as the nonlinear effects due to the
modulation by long-wave components. They can be calculated for given free long-wave

and short-wave components and subtracted from the measurements. It is observed that
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the two approaches render almost identical results in the cases of one free-wave compo-
nent at each frequency.

After the nonlinear effects are decoupled from the measurements, the modified mea-
surements are used as input for the computation at the next iteration. The three major
steps: (a) linear directional decomposition using the EMLM and selecting the repre-
sentative directional free-wave components, (b) initial phase fitting and (c) decoupling
of nonlinear effects are sequentially carried out at each iteration. At the end of each
iteration, the newly computed nonlinear effects are compared with those of the previous
iteration. The iteration terminates, when the differences between the nonlinear effects

of sequential iterations are smaller than a prescribed error tolerance.
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4 Numerical Verifications

In this section, numerical verification of the DHWM is conducted to ensure that the
present model is theoretically and pumerically reliable and convergent. Firstly, the con-
sistence and difference between the conventional perturbation solution and the phase
modulation solution are examined. Then, the aumerical accuracy and convergence of
the DHWM are compared with already established unidirectional Hybrid Wave Model
(HWM) in the case of unidirectional irregular waves. Finally, the DHWM is verified
against two sets of synthetic data, i.e. firstly, the DHWM is used to predict the simu-
lated wave fields with each set of synthetic free-wave components as its input, and then
the predicted wave fields are decomposed by the DHWM and the resultant free-wave

components are compared with the corresponding synthetic free-wave components.

4.1 Consistency and Difference between Conventional and

Phase Modulation Approaches

As discussed in §2, the phase modulation approach is complementary to the conven-
tional perturbation approach. When &; < & < 0.5, the phase modulation solution is
identical to the conventional perturbation solution. To numerically verify this point,
dual free-wave components are considered with the frequencies of the long- anfl short-
wave components being 0.1328 Hz and 0.2148 Hz, respectively. The water depth is set
to be 145.0m, which is intermediate water depth for the long wave and relatively deep
with respect to the short wave. The wave length ratio of the short to long wave, €,
is 0.3822. The wave steepness of the long-wave component, é1, is 0.10. The amplitude
of the short-wave component is 0.5382m and the steepness (.10. The direction angles
of the long- and short-wave components are 0 and 30 degrees, respectively. Both con-
ventional and phase modulation approaches are used to predict the surface elevation at

the horizontal position (-11.6m, Om). Velocity and acceleration components are also
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predicted at the same horizontal location but 3.0 m below the still water level. Figure
4.1 shows that the time-series of the surface elevation, z-direction horizontal velocity
and vertical acceleration predicted by these two approaches are almost identical. Figure
4.2 presents the predicted z-direction horizontal velocity under the long-wave crest as
a function of depth. The predictions of both approaches are in excellent agreement.
The small discrepancy is attributed to the implicit inclusion of third-order effects in the
phase modulation solution. The consistency of these two methods indicates that the
results of the DHWM is not sensitive to the band division.

However, when ¢, approaches g, i.e. the long-wave component is very steep and the
short-wave component is much shorter than the long-wave component in wavelength,
the conventional perturbation solution may diverge while the phase modulation solution
remains convergent. The non-convergence of the conventional solution was proved by
Zhang et al. (1993) in the case of unidirectional dual wave interaction. Here, we only nu-
merically demonstrate this point. A set of steep dual free-wave components are studied
with the long-wave component at the frequency of 0.07422 Hz and the short-wave com-
ponent at 0.1992 Hz. The water depth remains 145.0m. The short to long wave length
ratio g is 0.1390, &; = 0.2 and €, = 0.1. The direction angles are +15 and —15 degrees,
respectively, for the long- and short-wave components. Figure 4.3a shows the comparison
of the modulated short-wave elevations predicted using the two different approaches. For
reference, the solution for unmodulated short-wave elevation is also presented. The mod-
ulated short-wave elevation is obtained by subtracting the long-wave elevation from the
resultant wave elevation of the interacting dual wave components. The solutions of both
approaches are truncated at second-order in wave steepness. Comparing with unmodu-
iated short-wave elevation, the modulated elevation predicted by the phase modulation
approach is greater in amplitude and shorter in wavelength at the crest of the long-wave
component, and smaller and longer at its trough. These features are well known for
modulated short-waves by long waves (Phillips 1979; Longuet-Higgins 1987). On the

sther hand, the predicted elevations using the conventional approach is much greater in
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Pigure 4.1: Comparison between the conventional perturbation solution (—} and the
phase modulation solution (- - -) for a dual free-wave spectrum with ¢; = 0.10, ¢ =
0.3822: (a) surface elevation; (b) horizontal velocity; (¢) vertical acceleration.
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Figure 4.2: Comparison between the conventional perturbation solution (—) and the
phase modulation solution (~e~) for a dual free-wave spectrum with ¢, = 0.10, ¢ =
0.3822: z-direction horizontal velocity profiles of the long- and short-waves up to the
leading-order (I -} and the second-order (If —}, and long-wave velocity only {~x-1.



42 Zhang et al.

Surfacs elevation (m)
&2
H

5 £k

¥

I

e

o
3

L
@

0.8

0.6

0.4

et
ha

Surface elevation (m}
=

-{3.2
0.4 q-
(3.6
"“0.8 i ] )3 1 i l ] i, L
¢] 0.1 0.2 0.3 0.4 0.5 1521 8.7 [EX:) 0.8 1
8 f2n

Figure 4.3: Comparison between the conventional perturbation solution and the phase
modulation solution for a dual free-wave spectrum with ¢; = .20, & = §.139: {a} short-
wave elevation by the conventional perturbation solution at the leading-order {—}, and
up to the second-order (- - -} and by the phase modulation solution up to the second-
order (~e-); (b) short-wave elevation by the conventional perturbation solution at the
leading-order (—) and at the second-order (- - -), where © is the phase of the long
wave.
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Figure 4.4: Comparison between the conventional perturbation solution (—) and the
phase modulation solution (~e-) for a dual free-wave spectrum with ¢, = 0.20, &y = 0.13%:
z-direction horizontal velocity profiles of the long- and short-waves up to the leading-
order (I —} and the second-order (II —}, and long-wave velocity only [~x~).




44 Zhang et al.

amplitude and shorter in wavelength at the intersections of the long-wave surface and
the still water level, which are quite different from the features observed in the solution
of the phase modulation approach. To show that the large differences between the solu-
tions of the two approaches result from the non-convergence of the conventional solution
truncated at second-order, the conventional solutions for the leading-order short-wave
elevation and the elevation for the second-order bound wave components (sum- and
difference-frequency bound waves) are plotted separately in Figure 4.3b. The compari-
son shows that the second-oder bound-wave components are greater in amplitude than
the leading-order short-wave component. This obviously violates the perturbation prin-
ciple which requires the second-order solution to be much smaller than the first-order
solution. The comparison implies that the conventional solution does not converge at
second-order. However, one may ask why the bound-wave components are compared to
the short-wave component not to the long-wave component. This is because when the
short-wave component is much shorter in wavelength than the long-wave component,
the frequencies and wavelengths of the second-order bound-wave components are close
to those of the short-wave component. The significant differences between the two ap-
proaches can also be observed by comparing the resultant z-direction velocity under the
wave crest. Figure 4.4 shows the z-direction horizontal velocity under the resultant wave
crest where the short- and long-wave crests are coincident. The resultant horizontal ve-
locity of the long wave and the leading-order short wave predicted by the leading-order
conventional perturbation solution is much greater than the horizontal velocity induced
by the long wave only. Although the contribution from the leading-order short wave
is known to be exaggerated because of the factor e®* (for z ~ i}, the increase in the
resultant horizontal velocity is qualitatively correct because under the crest both wave
components are in phase. However, when the resultant horizontal velocity is computed
up to second-order, i.e. including the contribution from the second-order bound-wave
components, the resultant horizontal velocity is found to be smaller than the horizontal

velocity induced by the long wave only. The decrease in resultant horizontal velocity has
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two implications. First, the contribution to the horizontal velocity from second-order
bound-wave components is greater than that from first-order short-wave component.
This again violates the perturbation principle. Secondly, the overall contribution to the
horizontal velocity due to the presence of the short-wave component on the long-wave
surface is opposite to the phase of the short-wave component. This is contradictory to
both general wave theories and experiment observations. In contrast, the solution of the
phase modulation method up to second order gives a physically reasonable description

for the resultant velocity.

4.2 Comparison with Unidirectional HWM

A unidirectional wave field, or a long-crested wave field, is a special case of a directional
wave field, in which all the wave components are propagating in the same direction and
the wave properties along the crest line are identical. Since the unidirectional HWM
has been verified against laboratory measurements (Spell ef al. 1996), the DHWM is
verified against it by predicting the wave properties of unidirectional irregular wave
fields. For the first case, the nominal wave steepness of a unidirectional irregular wave
train is 0.18, which is defined as the product of the half of the maximum wave height
and the wavenumber at the peak frequency. The water depth is 145.0 m. The free-wave
spectrum (Figure 4.5) and the specified initial phases used as input for the computation
of resultant irregular waves were originally obtained by the decomposition of wave gauge
measurements described in § 5.1. The two wave models are used to compute the resultant
surface elevation at the location of 10.00 m downstream, and the pressure and velocity at
the same horizontal location but 8.25 m below the mean water level. Figure 4.6 shows the
calculated time-series of the surface elevation, dynamic pressure and horizontal velocity.
The results of these two models are in excellent agreement.

Figure 4.7a shows another free-wave spectrum for verification of the DHWM. This

spectrum represents a unidirectional transient wave train with extremely steep crests,
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Figure 4.5: Unidirectional free-wave spectrum for verification of the DHWM against the
unidirectional HWM.

which eventually leads to wave breaking (Zhang et al. 1997). The nominal steepness
of the wave train is 0.2344. The water depth is 0.90 meter. Figure 4.7b & ¢ show the
computed surface elevation at the origin, and dynamic pressure at the same horizontal
location but 25 cm below the mean water level. The resulis calculated using both
methods are almost identical. These comparisons indicate that the DHWM and the

unidirectional HWM are consistent in the case of unidirectional irregular waves.

4.3 Verification by Synthetic Data

The DHWM is examined in this section using the synthetic data which represent numer-
ically simulated short-crested waves accurate up to second-order in wave steepness. This
examination allows us to explore the accuracy and convergence of the present model since
the synthetic data do not involve errors resulting from discrepancy between the ideal
assumptions and real phenomena, such as viscosity effects, wave breaking, wave-wave

interactions higher than the second-order in wave steepness, and wave-wind interac-
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Figure 4.6: Comparison of the DHWM (-—) with the unidirectional HWM (- - -): (a)

surface elevation; (b) dynamic pressure; (c) horizontal velocity.
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Figure 4.7: Comparison of the DHWM (—} with the unidirectional HWM (- - -) for
a unidirectional breaking wave case: (a) free-wave spectrum; (b} surface elevation; (c)
dynamic pressure.
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tions. The characteristics of the free-wave components such as amplitudes, directions of
propagation, and initial phases are given first and then the DHWM is used to generate
the synthetic short-crested sea data, i.e. simulated time-series at fixed points. Then, the
synthetic time-series are used as input to the numerical scheme of the DHWM described
in §3 and the synthetic wave field is decomposed into free-wave components. The de-
composed results and the initial free-wave components used to generate the synthetic
data are compared to check the accuracy and convergence of the DHWM.

A synthetic multidirectional wave field in water depth of 145m is simulated based
on four free-wave components. Each of the free-wave components is assigned to one of
the cheracteristic frequency bands. The interactions among free-wave components are
computed at least up to second-order based on the DHWM. The resultant time-series of
wave elevation at the horizontal position (0,0) and two orthogonal horizontal velocity
compenents at the same horizontal position but 10m below the still water level are
used as inputs for the wave decomposition. The comparison between the input and
decomposed wave parameters is shown in Figure 4.8. The amplitudes, directions, and
initial phases of the decomposed free-wave components are virtually coincident with
those used as inputs for simulating the synthetic waves.

The next numerical wave simulation (shown in Figure 4.9) is based on a more real-
istic wave component selection which uses more free-wave components (64 discretized
frequencies and single free-wave component at each frequency in water depth of 145 m).
The input amplitudes, directions and phases are similar to the free wave components of
the OTRC experiment data, which will be presented in §5.1. As in the previous example,
the given free-wave components are used to generate time-series of wave elevation at the
horizontal position (0 m, 0.525 m} and two orthogonal horizontal velocity components at
the same horizontal position but 8.53 m below the mean water level using the DHWM.
The resultant times-series (synthetic data) are taken as the input for the wave decom-
position. It can be seen that the decomposed free-wave components agree very well with

the input. There are, however, some small discrepancies for the wave components of very
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Figure 4.9: Free wave components (64) used as input (o) for the wave field simulation

and their output {A) after the wave field decomposition.
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low energy. Because the amplitudes of these components are so small that the differences
between the prediction and input may be smaller than the prescribed error tolerance.
In addition, as pointed out by Jeffery (1986), the correlation matrix used in the EMLM
can be singular if the input data are from a single realization. The singularity can be
avoided by disturbing the matrix with an additional small quantity of incoherent noise
(Jefferys 1986), which might slightly affect the decomposed results. Excellent agreement
is also observed when the surface elevations at three different locations are simulated as

the measurements are from a wave gauge array (Prislin 1996).
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5 Comparisons with Laboratory and Field Mea-

surements

Unlike synthetic wave data, laboratory and field measurements are more or less contam-
inated by ambient noise, biased errors and imperfect calibration due to the limitations
of instruments and data acquisition system. In addition, it should be noted that the
DHWM is based on the potential theory and its nonlinear wave solutions are truncated
at second-order in wave steepness. Therefore, effects such as viscosity and high-order
nonlingar effects, which are naturally present during the measurements, are neglected in
the DHWM. Wave-breaking and wind may also exist in the field measurements. Hence,
the comparisons of the prediction based on the DHWM with the corresponding labora-

tory and field measurements may show how useful the DHWM is to real ocean waves.

The main objective of the comparison of the predictions with the corresponding
laboratory and field measurements is to validate the effectiveness and accuracy of the
DHWM for the deterministic decomposition of a short-crested irregular wave field. The
computation includes two parts: (a) decomposing a wave field represented by the mea-
sured data at certain locations into an assemble of free-wave components; (b) predicting
the wave properties at all measurement locations using the DHWM based on the de-
composed free-wave components. In most cases, part of the measured data are used for
the wave field decomposition and the remaining part of measurements are reserved for
examining the predictions of the DHWM. The accuracy and feasibility of the DHWM
are thus exarmined in two different tests. The first test involves the comparison of the
predicted time-series with the corresponding measurernents used as input in the deter-
ministic wave decomposition. This kind of predicted time-series is referred as recovered
signals. This test examines whether or not the iteration in our numerical scheme con-
verges. The second test involves the comparison of the prediction with the corresponding

measurements not used as input in the wave decomposition and hence is more compre-
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hensive. This kind of predicted time-series is referred as predicted signals. This test may
reveal whether or not the deterministic decomposition is useful in predicting wave char-
acteristics nearby the measurements. The comparisons also demonstrate the flexibility
of the DHWM by showing that the methodology is applicable to measurements from
various types of sensors. The effects of the numbers of the sensors and the free-wave

components at each frequency on the accuracy of the decomposition and prediction are

also investigated.

5.1 OTRC Laboratory Data

5.1.1 Experimental Measurement

Laboratory data were collected in a multi-directional deep-water wave basin at the Of-
shore Technology Research Center (OTRC), Texas A&M University. The OTRC wave
basin is capable of generating waves, currents, and wind. The basin is 45.7 m long,
30.5 m wide, and 5.8 m deep. At the center of the basin there is a rectangular deep
pit of 9.1 m long and 4.6 m wide, where the depth is adjustable from 5.8 to 16.7 m.
The pit was covered during our tests so that the water depth was constant over the
entire basin. At the North side of the basin, there is a multi-directional ‘snake-type’
wave generator, which consists of 48 hinged flaps (wave boards) in a row and are driven
independently by servo-controlled linear hydraulic actuator. Each flap is 0.6 m wide and
9.84 m high. The wave maker is capable of generating multi-directional irregular waves
through individually programmed drive signals for each wave board. The drive signals
can be downloaded to three mechanical control units that control the wave boards. The
wave maker is capable of generating oblique waves with a maximum angle of 60 degrees
with respect to the longitudinal centerline of the basin.

To simulate an ocean wave field, the model scale is determined based on the Froude
similarity criterion. For all tests in our study, the length scale of the model to prototype

is 1:25. The data collected during the model tests were from the multi-array pressure
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Coordinates

Sensor | z (m) | y (m) | z (m)
P1 | 0.000 | 0.000 | -8.25
P2 0.600 ; -11.5 ; -8.25
P3 -11.6 | 0.000 | -8.25
P5 11.28 | 0.000 | -8.25
Pé 5.625 | -5.65 | -15.9
P7 563 | 5.78 | -15.9
W1 0.000 | 0.525 | 0.000
w2 0.600 ; -11.5 ; 0.000
W3 -11.3 | 0.325 | 0.000
W4 | 0.000 | 115 1 0.000
W5 11.2 | 0.325 | 0.000

Table 5.1: Coordinates of the sensors in the OTRC model test (prototype scale).

and surface elevation measurements and from a single-point velocity measurements. The
data used for the wave decomposition, however, are only pressure and surface elevation
data because the measurements of wave particle velocities are found unreliable (Prislin
1996). The coordinates of the sensor locations in the OTRC model test are presented in

Table5.1 in which the capital letters P and W denote pressure sensors and wave gauges,

respectively.

The directional waves are generated by combining two irregular wave trains of dif-
ferent peak frequencies and advancing in two different directions. The wave spectrum
hence has two major peaks at different frequencies and different directions. The signifi-
cant wave heights, directions and peak frequencies of the two irregular wave frains are
HY) = 75m, p0 = ~16°, f0) = 0.07Hs, and HZ =5m, g0 = 124°, f® = 0.1Hs,
respectively, in the prototype scale. In addition, the wave components at each irregular
wave train are spread for about 20 degrees with respect to the main wave directions,
respectively. All results are presented in the prototype scale hereinafter. The significant

wave height, estimated from the resultant frequency spectrum, is 7.3 m and the nominal
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wave steepness, defined as the product of one half of the significant wave height and the
wavenumber at the spectrum peak, is about 0.065. Hence, this wave field is of moderate
steepness and does not represent the case of storm waves. Virtually no wave breaking is
observed during the test. The duration of the analyzed records is 256 seconds and the
sampling rate is 4 Hz. Further details of the experiments are referred to Prislin {1996).

5.1.2 Numerical Recovery and Prediction

The decomposition of the measured short-crested irregular wave field is initially carried
out using two different sets of measurements as input: (a) the surface elevation at the
wave g‘auges W1, W4, and W5, and (b) dynamic pressure at sensors P1, P5, and P7,
respectively. A single wave component at each frequency is used for the wave decompo-
sition because the signals for driving the wave maker were created by the same principle.
The time-series of the surface elevation and pressure head are calculated based on the
decomposed free-wave components and compared with the corresponding measurements
which were filtered through a low-pass filter of cutoff frequency 0.25 Hz. First, the
comparisons between the input and computed time-series of the surface elevation and
pressure are presented in Figures 5.1 and 5.2, respectively. All the computed signals at
the locations where the measurements were used as input, i.e. the recovered signals, are
in excellent agreement with the measurements, indicating that the numerical scheme is
convergent. Next, the proposed methodology is tested for the prediction of the wave
properties at the locations where the measurements were not used in the decomposition.
For this purpose, the dynamic pressure at P6 and the wave elevation at W3 are pre-
dicted, respectively, based on two sets of the decomposed free-wave components. The
measured pressure at P6 is compared with the corresponding predictions in Figure 5.3,
The predicted pressure time-series based on the decompositions of both the pressure
and surface elevation measurements match the measured signals very well. The pre-

dicted surface elevations at W3 based on both of the two decompositions are presented
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Figure 5.1: Surface elevation time-series as input (o) for the wave field decomposition
and the corresponding recovered results (—) for the OTRC laboratory data at: (a) W1;

(b) W4; (c) W5.
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Figure 5.2: Pressure time-series as input {0} for the wave field decompesition and the
corresponding recovered results (—) for the OTRC laboratory data at: (a) P1; (b) P5;
(c) PT.
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Figure 5.3: Pressure time-series as measurements {0} and the corresponding predicted
results (] for the OTRC laboratory data at the location of P6: {(a) predicted from the
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Figure 5.4: Surface elevation time-series as measurements (o} and the corresponding
predicted results (-} for the OTRC laboratory data at the location of W3: (a) predicted
the from surface elevation measurements; {(b) predicted the from pressure measurements.
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Model w1 W2 W3 W4 W5
Semsors Ne | R x (%) [ R x(%[ R x(%)| R x (%] B «x (%)
1-3 11993 1.16 [ .999 1.74 |.993 1.28 | 965 1.94 | .974 2.19
1-3 3 1.993 124 |.992 148 !|.993 1.16 |.965 2.01 | .960 2.80
1-3 5 1996 0.85 |.995 1.27 |[.997 0.94 | .979 146 | 981 1.74
1-3 7 :.996 0.83 [ .995 1.19 |.997 0.88 |.981 1.66 |.984 1.68
1-4 17994 101 |.984 202 {.991 1.37 |.983 145 |.977 2.04
1-4 3 1.993 1.17 |.988 1.67 |.989 150 |.990 1.11 | .957 3.20
1~4 5 1.996 0.89 |1.993 1.41 |.996 0.91 |.994 088 |.976 246
1-4 7 | 996 0.83 |.994 132 ;.997 0.90 |.995 0.84 | .978 1.90
1-5 1 1.990 1.25 |.975 252 | .985 1.78 | 978 1.60 | .983 1.65
1-5 3 ].988 1.41 [.979 236 !.982 2.06 |.983 1.63 | .983 1.78
1-5 5 1990 1.26 |.983 2.17 | .991 1.41 |.988 1.33 | .988 1.39
1-5 71990 1.26 | 984 215 |.991 1.38 |.988 1.26 | .990 1.26

Table 5.2: Standard errors and correlation coefficients between the measured and com-
puted time-series for the OTRC laboratory data.

in Figure 5.4. Similar to Figure 5.3, the agreement between the prediction based on the
surface elevation measurement and the measured signals is excellent (Figure 5.3a). Be-
cause ocean waves are commonly measured using pressure transducers, it is of interest to
examine the DHWM in predicting wave properties close to the free surface based on the
data measured at the locations quite below the calm water level. In this case pressure
measurements from the pressure transducer array P1, P5 & P7 were used for the decom-
position and then the decomposed free-wave components are used to predict the‘ surface
elevation at the location of wave gauge W3. The measured and predicted signals are in
satisfactory agreement (see Figure 5.4b). However, the discrepancies slightly increase in
comparison with those in Figure 5.4a. This may result from greater noise to signal ratio
in the higher frequency range of the pressure measurements.

To examine the effects of the number of wave components at each frequency and the

number of sensors used in the decomposition on the accuracy of wave decomposition

and predictions, different numbers of the surface elevation measurements and multiple
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Figure 5.5: Pressure time-series as measurements (~} and the corresponding predicted
results from the decomposed free-wave components based on the surface elevation time-
series at Wi-W5 with one (- - -} and seven {- - ~] wave components at each frequency
for the OTRC laboratory data: (a) at the location of P2; (b) at the location of P3.
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free-wave components at each frequency are used in the decomposition. The time-series
of surface elevations at all the measurement locations are calculated based on the decom-
posed free-wave components and are compared with the corresponding measurements.
The correlation coefficients between the measured and calculated surface elevation time-

series, and the standard errors are shown in Table 5.2. The correlation coefficient and

standard error are defined as below,

)i‘ ( ) (CMi - CM)

R — . im].w : 7E ~ 73 (5«1)
[5_: (¢-2¢) ] [‘% (¢ars — Cur) }
\N Z G~ CMt CM‘
=l x 100 %, (5.2)
CMma:z

where (; and (pr; are the calculated and measured surface elevations, respectively, and
¢ and {3y are the means of ¢; and (ar;, respectively. N is fshe total number of data
points in the time-series, and (ymq. is the maximum surface elevation in the measured
time-series. In Table 5.2, N, is the number of free wave components at each frequency,
and the column of ‘Sensors’ indicates which sensors’ measurements are used in the
decomposition. Overall, the table shows that the measured and calculated time-series
match very well. For the recovered signals, all standard errors are smaller than 2.55%
and all correlation coefficients are greater than 0.970. For the predicted time-series,
these two parameters remain impressive, ¥ < 3.3%, R > 0.955, These resulis imply the

high accuracy of the predictions in using the DHWM.

Table 5.2 also demonstrates that the increase in the number of wave components per
frequency generally reduces the standard errors for the recovered signals but only slightly
improves the accuracy of the predicted signals. The standard error for the recovered

time-series can be reduced by up 40% by increasing the number of wave components
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from one to seven at each frequency. This phenomenon is expected because more wave
components provide more degrees of freedom for minimizing the target function of the
phase fitting. However, the reduction of the standard error is not significant for the
predicted signals, which may result from the narrow wave energy spreading in the test.
"Therefore, when the directional spreading of wave energy is narrow, the wave field can be
modeled accurately by a single wave component at each frequency. It is noted that with
the increase in the number of the sensors but with fixed free-wave components at each
frequency used in the wave decomposition, both correlation coefficients and standard
errors change slightly. No definite trends can be seen. Figure 5.5 shows the predicted
pressure time-series at P2 and P3, respectively. The decomposition is made based on
the elevation measurements at WI-W5. It is observed that all predicted signals match
their corresponding measurements very well. By increasing the number of free-wave
components at each frequency to seven, the predicted pressure time-series are slightly
better in agreement with the corresponding measurements than the predictions of one

wave component at each frequency.

5.2 HARVEST Field Data
5.2.1 Field Measurement

Pressure data were collected from an array of pressure sensors mounted on the Texaco
Harvest offshore oil production platform, approximately 16 meters below the sea surface.
The platform is a fixed structure located about 10 kilometers west of Pt. Conception in
a water depth of 225 m. The data were transferred $o the Coastal Data Information Pro-
gram {CDIP) at the Scripps Institution of Oceanography at 3 hour intervals {Seymour
et al. 1993).

A set of pressure data representing the sea state on May 24, 1993 were selected
for this study. The sea state was a combination of two wave trains — a swell from the

south and local wind waves from the north-west. The angle between their directions was
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Sensor

Coordinates | Pl P2 P3 P4 P5 P6
z (m) 0.0 [-229(-229 0.0 |-59.4|-59.4
y (m) 0.0 0.0 | 227 | 22.7 | 0.0 | 22.7
z (m) -16.0 | -16.0 | -16.0 | -16.0 | -16.0 | -16.0

Table 5.3: Coordinates of the sensors for the HARVEST field measurements.

around 100 degrees. The spectral peaks of the swell and wind waves were around 0.066
and 0.10 Hz, respectively. The significant wave height, estimated from the resultant
frequency spectra is 1.20 m and the nominal wave steepness is 0.012. Although the
waves were not very steep, the case is chosen because the wave field is a combination
of two distinct directional wave trains. The data were sampled at the rate of 1 Ha.
The duration of the time-series used in the decomposition is limited to approximately
17 minutes assuming that within that duration of time wave properties such as wave
amplitudes and directions of propagation are approximately stationary. There were six

pressure sensors on the platform and their coordinates are listed in Table5.3.

5.2.2 Numerical Recovery and Prediction

Initially, the measurements from the semsors P1, P2, and P3 are used for the wave
decomposition, and the time-series from the sensors P4, P5, and P6 are reserved for
comparison. Before the decomposition, the measurements of P1, P2, and P3 were filtered
using a numerical low pass filter of the cutoff frequency of 0.185 Hz. The choice of the
cut-off frequency at 0.185 Hz is because of low signal to noise ratic over the frequency
0.185 Hz. Based on the decomposed free-wave components, the pressure at the locations
of the pressure sensors P4, P5 and P6 were predicted. The recovered pressure time-series
at P1, P2 and P3 and the predicted pressure time-series at P4, P5 and P6 are compared
with the corresponding measurements in Figures 5.6 and 5.7, respectively. The computed

signals and the measurements are in excellent agreement.




66 Zhang et al.

b
tn

()

b
=
1

o
i
1,

&

[

I B e
&

Gy

i

Pressure head (m)
: g

=
o
T

&
L
8‘..‘ Y=
-

mt
b
=

E (b)

-

o
T

1

=

[
Trr T

i

&
153
i

1

Pressure head (m)
£

-
o

MR
i

>
S
g
g

Time (s)

= =
o ey
3 ¥
g
1

Ld

n

™
i

Pressure head (m)
g & o
]

P
L)
¥

|

ko
R

Time {8}

Figure 5.6: Pressure time-series as input {o) for the wave field decomposition and the
corresponding recovered results (-—} for the HARVEST field measurements at: (a) P1;
(b) P2; (¢} P3.
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Figure 5.7: Pressure time-series as measurements (o) and the corresponding predicted

results (-—) for the HARVEST field measurements at: (a) P4; (b} P5; (c) P6.
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The above results for the recovered and predicted time-series in Figures 5.6 and 5.7 are
obtained based on the wave decomposition using the measurements of three transducers
and one directional free-wave component at each frequency. The effects of the number
of sensors and the number of wave components at each frequency used in the wave
decomposition on accuracy of the decomposition and prediction are also investigated
here. The correlation coeflicients and standard errors for the computed and measured
signals are shown in Table 5.4. The trends shown in Table 5.4 are similar to those
observed in §5.1. It seems that there is not significant improvement in correlations and
standard errors due to the increase in the number of sensors. Increase in the number of
wave components at each frequency improves the accuracy of the recovered times-series,

but does not improve the accuracy of predicted time-series significantly.

5.3 FULWACK Field Data
5.3.1 Field Measurement

The FULWACK (Fulmar Wave Crest Kinematics) measurement was conducted at Ful-
mar Platform in the central North Sea during the winter of 1981-82. The data was
collected during the second storm on November 24, 1982. There were two storms in
series with a delay of 36 hours. Both storms had the same path and relatively slow
forward motion that caused very high waves in the North Sea on November 24, 1982
(Forristall 1986). The water depth at the measurement site was 82.5 m.

A Baylor wave gauge and five Marsh-McBirney model 524 spherical electro-magnetic
velocity meters (EMV) were installed outward the north side of the platform. The
standard Baylor wave gauge consists of two verfical parailel steel wire ropes each of
" 12.7 mm diameter, separated at a distance of 228.6 mm and stretched under tension
through the sea surface. The wires form an electrical transmission line terminated at
its lower end by the sea surface. The impedance of this line was measured at 650 kHz,

which assured linear instrument characteristics. The support system for the EMVs was
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Sensor
Coordinates | Wave gage | EMV 5 | EMV 2 | EMV 4
x (m} 0.00 -0.66 -3.07 -1.21
y (m) 0.00 6.00 0.00 0.00
z{m) N/A -8.53 4.88 -5.48

Table 5.5: Coordinates of the sensors in the FULWACK field measurements.

a single wire rope, stretched over the upper and lower sheaves to form a pair of taut
wires. The tension in the taut wire was adjusted to a desired value with a spring-loaded
tensioning device. The EMVs and their cables were clamped to one side of the loop and
lowered to a position by rotating the top sheave. The locations of three EMVs used in
this study are deduced from Forristall (1986) and they are given in Table5.5. During
the measurement, the EMV 3 did not work, and the EMV 1 was seldom submerged in
the water, so these two measurements were not included in our study. The coordinate
system for velocity measurements was an orthogonal right-hand-side coordinate system
with the z-axis oriented upward. The z-axis was pointed to 71.5° true north. The origin
of the coordinate system was placed at the calm water level.

Before recording, all signals were passed through the same type of low-pass filters
(the cutoff frequency was 4 Hz), which guaranteed the same phase lags for all signals.
The calculation performed by Forristall (1986} showed that the natural frequency of the
taut wire system was around 2 Hz. The vibration of EMVs is clearly seen fi‘am the
measured velocity data.

A time-series of 256 seconds involving steep waves is selected and analyzed with a
cutoff frequency of 0.25 Hz, which is about 3.3 times of the frequency at the spectral peak.
The significant wave height is 11.2 m, and the nominal wave steepness is 0.138. The
directional energy spreading is narrow and unimodal. The cutoff frequency is selected
to be 0.25 Hz because the signal to noise ratio of the measurements from EMV 5 is

too low above that frequency. The time-series from EMV 5 is chosen as input for
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the wave decomposition because it is the only continuous time-series among all EMV
measurements. All the other velocity measurements are intermittent since the EMVs
emerged out of water when deep troughs passed by. Hence, they were not used for

decomposition. However, they were used for the comparison with the predicted signals.

The FULWACK data are unique in the following three respects: (a) waves were
relatively steep (nominal wave steepness is 0.138), (b) measurements were taken at
the same horizontal position (not an array of the same type of instruments}, and (c}

measurements were taken at different depths below and above the calm water level.

5.3.2 " Numerical Recovery and Prediction

The DHWM is used to decompose the wave field based on the measurements of surface
elevation and a pair of horizontal velocity components (EMV measurements) at 8.53 me-
ters below the calm water level. As discussed in earlier sections, because of Very Narrow
directional energy spreading, only one wave component is used at each frequency for
the wave decomposition. Horizontal velocity components at 5.48 meters below the calm
water level (EMV 4} are predicted and compared with the corresponding measurements.

The measurements used as input for the wave decomposition are filtered by neglecting
wave components above the cutoff frequency of 0.25 Hz. The comparisons of input and
recovered time-series for the surface elevation and the horizontal velocity components
at 8.53 meters below the calm water level are given in Figure 5.8. The recovered signals
are in reasonably good agreement with the corresponding measurements, noticing that
there were noises in the measured velocities induced by the vibrations of the taut wires.

The prediction of velocity components at depth z = —5.49m (EMV 4) are compared
with the corresponding measurements in Figure5.9. In this case, the measured signals
could not be filtered because of the intermittent nature of the time-series. The predicted
signals agree very well with the measurements. In Figure5.9, the flat zero sections in

the predicted signals represent the time intervals when the semsors are out of water,




72 Zhang et al.

Some departures from the measured values are due to the large vibration displacement
of velocity meter EMV4 rather than by the inaccuracy of the model. Forristall (1986)
reported that the velocity meter at this depth had the biggest displacement of about
0.91 meters in a wave of 23 meters high. The predictions were also made to compare
with measurements by EMV2, as presented in details by Prislin & Zhang (1997). They
are not repeated here.

One of the prominent advantages of the DHWM is its ability to accurately decompose
a wave field and to predict wave kinematics under the wave crest and above the calm
water level. Other existing methods commonly used in practice for wave kinematics
predictions in the wave crest are usually based on ad hoc modifications such as the
‘stretcixing’ and extrapolation techniques (Gudmestad 1991). These methods do not
satisfy the hydrodynamic principles such as the free-surface boundary conditions and the
Laplace equation, and do not account for wave directionality. Thus, their predictions of

wave kinematics are quite inaccurate,
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Figure 5.8: Time-series as input (o) for the wave field decomposition and the correspond-
ing recovered results (-~} for the FULWACK field measurements: (a) surface elevation

at the location of the wave gauge, (b) V, at EMV 5; (b) V, at EMV 5.
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Figure 5.9: Velocity time-series as measurements {0} and the corresponding predicted

results () for the FULWACK field measurements: at EMV 4: (a) V;; (b) V,.
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6 Conclusions and Further Work

A new methodology for the deterministic decomposition and prediction of short-crested
ocean waves is described. This method has been validated through the comparisons with
synthetic data, laboratory and field measurements and proved to be reliable, flexible and

robust. It is able to provide accurate predictions for engineering applications based on

wave measurements,

The methodology integrates three fundamental features of ocean waves: wave direc-
tionality, initial wave phases, and nonlinear wave-wave interactions. Based on the liter-
ature survey, this is the first time that all these features have been considered Jointly to
study an ocean wave field and its wave characteristics in a deterministic manner. The
novelty of present method is that no priori assumption was made regarding functional
or statistical properties of free-wave components. The purpose of wave decomposition
is to determine the free-wave (linear) components constituting measured irregular wave
field. Only after they are known, wave properties other than those measured can be
deterministically predicted in the vicinity of the measurements. The difficulties of wave
decomposition stem from the complicated structure of wave fields and inherently in-
tertwined directional nonlinear waves. The additional challenge is that a wave field is
described by a limited number of measurements.

The directional hybrid wave model (DHWM) calculates directional, nonlinear, and
initial phase characteristics of free-wave components based on as few as three measure-
ments of short-crested irregular ocean waves. It unifies conventional and contemporary
nonlinear wave theories based on the wave phase modulation, attributed to the nonlinear
hybrid wave theory (Zhang et ol. 1993; 1996a). The DHWM is materialized in three
wajor steps: the extended maximum likelihood method {EMLM) (Isobe et al. 1984)
is employed for the computation of directional energy spreading, a least square phase
fitting method is used for determining initial phases of free-wave components, and non-

linear effects up to at least the second-order in wave steepness are computed based on
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the hybrid wave model and subtracted from the corresponding measurements. These
three steps are related but each of them can be individually revised or replaced with its
improvement in the future.

The consistency of the DHWM was examined numerically. Its accuracy and conver-
gence were verified against the unidirectional hybrid wave model and two sets of synthetic
data. The DHWM was also applied to one set of laboratory measurements and two sets
of field measurements. In all cases, whether the input time-series were obtained from
wave gauges, pressure sensors or current meters, the predictions of wave properties were
accurate and in excellent or satisfactory agreement with the measurements.

The methodology allows for the use of different kinds of measurements as input,
which is especially useful in various field and laboratory measurements. The DHWM
can predict wave properties other than the measured and the prediction can be used
to study wave-structure interactions and for the checking of wave measurements other
than that used during the decomposition process.

The DHWM is, however, in its infant stage. There is a plenty of room for improve-
ment. In the present work, the water depth is assumed to be uniform, and of intermediate
depth with long-wave components and deep with respect to short-wave components. The
extension of water depth to allow for intermediate to short-wave components and shallow
to long-wave components will certainly offer new applications to coastal processes. The
EMLM for wave directional decomposition based on the cross-spectral approach may
fail in the bi-modal directional waves due to the artificial phase locking for tﬁe wave
components of the same frequency but from different directions of propagation, when it
is applied in a deferministic manner, i.e. no averaging over many realizations. Because
of this weakness, if is important to work on better data-adaptive methods for directional
decomposition. Finally, to better validate the DHWM, more comparisons with different

laboratory and in situ measurements should be conducted in the future.
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Appendix A Wave Properties by the Conventional

Perturbation Solution

The dynamic pressure head, z -+ P/(pg), can be derived from the Bernoulli equation

5% 1, P
N + —Z—IVQ, +gz+ '; == Cl, (A1)

where p is the density of water. For the interaction of two directional wave components,

the hydrodynamic pressure obtained by the conventional perturbation solution is,
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where
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with I', a; and ) being defined in §2.1.1.

The velocity components are the spatial derivatives of the potential @,
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The acceleration includes two parts: local acceleration and convective acceleration,
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Appendix B Parameters of the Phase Modulation

Solution

The parameters of the phase modulation solution in (2.19) can be obtained as discussed
in §2.1.2. By truncating the first order spacial derivatives of the modulated short-wave

potential to O(\*), the related parameters can be expressed as follows.
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Appendix C Wave Properties by the Phase Modu-

lation Solution

The dynamic pressure of the short-wave component modulated by a long-wave compo-

nent can be obtained from the Bernoulli equation

Pa 1 8‘1’3 1
-p—; Az = w;V@g V&, — —-5};—— - 2 ]V‘I’ai s (Cl)
with
gy o moolile R ca

>y COSh(klh)
where the subscripts 1 and 3 represent the long-wave component and the modulated
short-wave component, respectively. Hence, by substituting the phase modulation solu-

tion given in §2.1.2 into (C.1), we have
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with [' and A, being defined in {2.6d} and {A.3b), respectively.
The velocity components of the modulated short-wave component can be calculated

by the spatial derivatives of &3,
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The acceleration of the modulated short-wave component is in the form of
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where the first-order long-wave velocity components are,
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the time derivatives of the modulated velocity components are
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and the spatial derivatives of the modulated velocity components are:
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dw

fd —gaogkase™f sin 8. (C.101)
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For a short-wave component modulated by M long-wave components, the modulated

surface elevation is the sum of the modulations by all M long-wave components,
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The modulated dynamic pressure is, then,
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” sinh[kn(z + h)] coshlkm(z + R)] (C.14c)

Am Iy H s 3 feeed
o3 L cosh kb Ko

cosh k.. b
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The modulated velocity components are in the same form as {C.5), but with

M

Cu=Y.

m=1 |
M

C =3

m=1

M J4+1

Zhang et al.

J41 .
Tym €08 3 + cos B Z pmj(kmz)J} s

=0

I+i A
T 5in F3 + sin G, z pmj(ka)J} .

i=0

Cw :Z ijmj(kmz)j_is

mel i
M

Sy = cosfm

me=l
M

Sp = z sin B,

m=1

M

J
1 — T Al S (kmz)
T A O Z'fm::( mZ)

=0
J+1

1= A2 — 3 Y (Bmz)

=0

J+1

Su =3 |Tm+ 3G+ Dymi(kmz) | -

mzzl

=0

H

(C.15a)

(C.15b)

(C.15¢)

(C.15d)

(C.15e)

(C.15f)

The modulated acceleration components can be calculated as {C.7), but with the sum-

mation over all the long-wave components,

M amgk
u = > md i K pm c08 By €08 O,
el m
M
vgl) == z amkm Ky sin B, cos b,
m=1 Om

M k
wld = 3 mgpm sin 6.,

m=1

M

fe=z-— Z {amcosﬁm»%«amzcosﬁm [

mak

Tm

F=0

JF
> YimlEmz)

i

M F
Gy = kgot + hayy — oat + 85+ 9 gf%sam sin §,. Eﬁjm{?ﬁmz}j} :
=l Fezf

(C.16a)

(C.16b)

(C.16¢c)

(C.16d)

({C.16e)






